Name:		Maths Class	S :
	***************************************	1.200010	

SYDNEY TECHNICAL HIGH SCHOOL

Year 12

Mathematics

Term 1 Examination

March 2005

TIME ALLOWED: 70 minutes

Instructions:

- Write your name and class at the top of this page.
- At the end of the examination this question sheet must be attached to the front of your answers.
- Attempt all questions.
- Start all questions on a new page.
- All necessary working must be shown.

Q 1	Q 2	Q 3	Q 4	Q 5	TOTAL
/14	/15	/13	/13	/15	/70

QUESTION 1: (14 MARKS)

(a) If the nth term of a sequence is given by $T_n = 3^{2-n}$

2 (i) show that the sequence is geometric

(ii) Find its common ratio

(iii) Write an expression for the sum to n terms.

(b) Given the series $4+5\frac{1}{3}+6\frac{2}{3}+...$

2 (i) find the 19th Term

- 2 (ii) find the sum to 19 terms
- 3 (c) If the limiting sum of the series $1+x+x^2+\dots$ is $\frac{3}{5}$ find the value of x.
- 3 (d) What is the value of the 11th term of the series

$$1\frac{1}{2}-3+6-\dots$$

QUESTION 2: (15 MARKS) (Start a new page)

2 (a) Find the value of $\sum_{1}^{10} 2^n$

- Find the slope of the tangent to the curve $y = x \frac{1}{x}$ at the point where x=1
- 2 (c) By using calculus, explain why the curve $y = 5 + 2x 3x^2$ is always concave down.
- 3 (d) Find the value of x for which the curve $y = x^2 5x + 3$ is increasing.
- 6 (e) If α and β are the roots of the equation $x^2 2x 7 = 0$ find the value of:

(i)
$$\alpha + \beta$$
 (ii) $\alpha\beta$ (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (iv) $\alpha^2 + \beta^2$

QUESTION 3: (13 Marks) (Start a new page)

- 3 (a) Form a quadratic equation containing no fractions which has roots of $-\frac{2}{3}$ and $\frac{3}{2}$
- 7 (b) (i) Find the maximum and minimum turning points on the curve $y = x^3 3x + 3$
- 3 (ii) Hence sketch the curve showing all essential features.

 DO NOT find inflexion points or the x intercepts.

QUESTION 4: (13 MARKS) (Start a new page)

- 2 (a) Find the acute angle x (in degress) which solves $\cos^2 x = \frac{1}{2}$
- 3 (b) Solve, to the nearest minute, the equation

$$3\sin\theta - 2 = 0$$
 if $0^{\circ} \le \theta \le 360^{\circ}$

- (c) The adjacent sides of a parallelogram have lengths of 4cm and 6cm and include an angle of 60°
 - (i) Draw the parallelogram
- 3 (ii) Calculate the length of the longer diagonal, giving your answer correct to 2 dec. places.
- 2 (iii) Calculate the area of the parallelogram, correct to 2 dec. places.
- 3 (d) By making a suitable substitution, or otherwise, solve the equation:

$$x^4 + x^2 - 2 = 0$$

QUESTION 5 (15 Marks) (Start a new page)

- (a) If $y = ax^2 + bx + c$ passes through the point (0,7) and the curve has a turning point at (3,-2),
- 1 (i) find the value of c
- 2 (ii) by investigating $\frac{dy}{dx}$ prove that 6a + b = 0
- 3 (iii) by finding another equation in a and b, and using your answer to part (ii) above, find the values of a and b.

- (b) In the town of Mathsville, the population increases at a rate of 6% per year due to births and migration, but loses D persons per year due to deaths.
- 1 (i) The population as at January 1, 2005 is 100 000. Find an expression for the population on January 1, 2006
- 2 (ii) Show that the population on January 1, 2007 will be 112,360 2.06D
- 3 (iii) Show that the population after n years from January 1, 2005 is given by

$$P = 100\ 000(1.06)^n - \frac{50D}{3}(1.06^n - 1)$$

(iv) If the death rate (D) is a constant 500 persons per year, estimate the population as at January 1, 2025, to the nearest 100.

(iii)
$$S_n = \alpha(r^n - 1)$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

$$= \frac{3(3^n - 1)}{\frac{1}{3} - 1} \leftarrow \frac{1}{3} \left(\frac{1 - \frac{1}{3}}{3} \right) \frac{1}{3} \text{ is}$$

(i)
$$T_{iq} = \alpha + 18 d$$

$$= 4 + 18 (13)$$
burncally there are 2 mashs for
$$= 28$$

$$= 28$$
burncally there are 2 mashs for
$$= 4 + 18 (13)$$
and $d = 15$ and $d = 4$

$$= 28$$

$$= 28$$
cond $d = 15$ and $d = 1801$.

$$(1) \quad 1 + x + x^{2} + \frac{3}{5}$$

$$\alpha = 1, r - x \quad 5_{\infty} - \frac{1}{1 - x} = \frac{3}{5} = 0$$

$$0 = 1, r - x \quad 5_{\infty} - \frac{1}{1 - x} = \frac{3}{5} = 0$$

$$3x = -2$$

$$x = -\frac{2}{3} = 0$$

(d)
$$\alpha = 1/2 r = -2$$

(a)
$$\sum_{i=0}^{\infty} 2^{i} = 2 + 4 + \dots + 2^{\infty} = 0$$

$$= \frac{2(2^{n-1})}{2^{n+1}}$$

$$= \frac{2(2^$$

(in) &+ 13 = d + 13 + 10 for the step

= -2/1 40

QUESTION 4: (e) 65 x = 1/2 award & for somed assure. CC 5x = = = 1/2 arrest (for including 135° ". x -45" amout (T) for setting to step 2 (5) and not sething 4.5° 3 sinc - 2 = 0 5 - BALS 6 int 43 4 C - بئ · 62 4-12 1 pech consid (<u>c</u>) (.) 12 NO MARKET FOR d2= 6+4 -2.6, 4 - 100120 - 10 for this (.,) (1) for cos rule correct d = 126 a (1) 1 = 3.6.4. sin 120 = 0 4 U for do the area 18 DOG I MAR 5 Las neit the pligm (at) KITHER ion Leturn $(x^2 + 2)(x^2 - 1) = 0$ 1: 42 +4 2 -0 1 12 01 12 a · ((+2)(a -1) - 0 () المرود ما x = 1 in Risary of Risa NC 501 - 2 + 1 Institute in an

```
QUESDON 5
 (0) y = and + box c
 (1) Passis though (0,7)
(i) dy = 2 (x+b.)
  Turning Point of (3,-2)/
      1. 2a(3)+h=U ()
             6a+ h-0 - ()
(i) Tauco throsk (3,-2)
  -- -2 = 90+3b+7.(1)
     1. 9a+3b+9=0
      3 4 4-3-1
                      the process is imported.

The process is imported.
     ()1·() 3a-3-2
(6)
             P = 100,000 (1.06) - D (IMARK - not required to
                                                    wife 106,000 - D
               0-201 (1-(20) 000,00) = 1
                 - 100,000 (1.36) - D(1+1.06) - C
                 = 112,360 - 2000 a ()
               P = 100, 00 (106) - D (1+1.06+1.41.06") KO
      (1.)
                    5_{3} = \frac{1(1.05)^{3} - 17}{1.06 - 1} = (1)
- 100,000 (1.00)^{3} - \frac{500}{5} (1000^{3} - 1) = (1)
      (i)
                Poo = 100,000 (106) - 15000 (106-1)
                      = 320,713.5+72 - 18392.796
```